
International Journal of Solids and Structures 41 (2004) 4179–4196

www.elsevier.com/locate/ijsolstr
Electro-elastic analysis of a bimaterial piezoelectric wedge
with an interface crack under antiplane concentrated

forces and inplane surface charges

Ching-Hwei Chue *, Thomas Jin-Chee Liu

Department of Mechanical Engineering, National Cheng Kung University, 70101 Tainan, Taiwan, ROC

Received 8 July 2003; received in revised form 14 January 2004

Available online 27 March 2004

Abstract

The antiplane electro-elastic field for a bimaterial piezoelectric wedge with an interface crack subjected to a pair of

concentrated forces and surface charges is studied in this paper. Based on the Mellin transform and the singular integral

equation, the stress, strain, electric displacement, electric field intensity factors at both crack tips are derived analyti-

cally. These parameters can be applied to examine the fracture behavior of the interface crack. The results are validated

when the problem is reduced to some simple cases studied in previous open literatures.
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1. Introduction

Due to the capability of the transfer between mechanical and electric energy, piezoelectric materials are

widely used in smart structures, sensors, and actuators. These structures usually involve wedge shape

structures at some local regions, where the geometry and material are discontinuous. The singular stress
field may occur at the wedge apex where the crack initiates.

Antiplane deformation problems of isotropic and anisotropic elastic wedges have been studied in the

past (Erdogan and Gupta, 1975; Ma and Hour, 1989; Kargarnovin et al., 1997; Shahani, 1999; Shahani and

Adibnazari, 2000; Shahani, 2001; Chue and Liu, 2001). Xu and Rajapakse (2000) and Chue and Chen

(2002, 2003) solved the stress singularities for a multi-material wedge bonded by composites, electrodes,

and piezoelectric materials. Wei et al. (2002) and Chue et al. (2003) used the Mellin transform to obtain the

antiplane electro-elastic field and intensity factors of the single-material and bimaterial piezoelectric wedges

subjected to a pair of concentrated forces and free charges.
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The existence of cracks in bimaterial wedges cannot be completely avoided. In reality, cracks may occur

on the interface of two bonded wedges due to debonding. Erdogan and Gupta (1975) used the Mellin

transform and the singular integral equation to study the interface crack in a bimaterial elastic wedge under

antiplane loadings applied at crack faces. Shahani and Adibnazari (2000) studied similar bimaterial elastic
wedges under a pair of concentrated antiplane forces applied at wedge edges. In their paper, the problems

of bonded wedges with an interface crack and the related cases were studied. A screw dislocation f ðrÞ was
proposed to solve the stress components, singularity orders, and intensity factors. More recently, Shahani

(2001) examined the behavior of f ðrÞ when one of the interface crack tips approaches the wedge apex.

In this paper, we study the antiplane deformation of the bimaterial piezoelectric wedge with an interface

crack subjected to a pair of antiplane concentrated forces and inplane electric surface charges. The intensity

factors of stress, strain, electric displacement and electric fields at crack tips are derived analytically.

Early in 1990, Pak studied the crack behavior in a piezoelectric material and considered the crack to be
impermeable; filled with a vacuum or a nonconducting gas. Zhang et al. (2002) and Zhang and Tong (1996)

theoretically studied the electrically impermeable and permeable boundary conditions. In addition, the

electric boundary conditions, in particular, for a mode III crack in a piezoelectric material were discussed in

detail by Zhang and Tong (1996). As described in the review article (Zhang et al., 2002), the electrically

impermeable and permeable boundary conditions are two extreme approximations for an electrically

insulated crack. A recent experimental work (Schneider et al., 2003) indicates that the permeable boundary

conditions are more reasonable than the impermeable boundary conditions.

However, due to the mathematical difficulties posed by applying the Mellin transform to the piezoelectric
wedge problem with an interface crack, the crack is assumed to be impermeable for this study.
2. Problem statements and basic formulations

The structure shown in Fig. 1 is composed of two bonded piezoelectric wedges with same wedge angle a
and an interface crack AB located on the common edge (h ¼ 0�) between r ¼ a and r ¼ b. The crack

surfaces are traction-free and impermeable (Pak, 1990). A pair of longitudinal shearing forces F and an-

other two inplane surface charges Q are applied on the edges r ¼ h. Because the wedge has an infinite length

along the z-axis, this problem becomes a generalized plane deformation problem. Since the piezoelectric
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Fig. 1. Configuration of a bimaterial piezoelectric wedge with an interface crack.
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materials are polarized in the z-direction, only the antiplane elastic field coupled with the inplane electric

field is considered in the analysis. The field quantities include the shear stresses ðrrz; rhzÞ, shear strains

ðcrz; chzÞ, elastic deformation ðwÞ, electric displacements ðDr;DhÞ, electric fields ðEr;EhÞ and electric potential

ð/Þ. They are functions of r and h only.
The constitutive equations of this antiplane problem can be written as follows
rðiÞ
hz

rðiÞ
rz

DðiÞ
r

DðiÞ
h

2
66664

3
77775 ¼

cðiÞ44 0 0 �eðiÞ15
0 cðiÞ44 �eðiÞ15 0

0 eðiÞ15 eðiÞ11 0

eðiÞ15 0 0 eðiÞ11

2
66664

3
77775

cðiÞhz
cðiÞrz
EðiÞ
r

EðiÞ
h

2
66664

3
77775; i ¼ 1; 2 ð1Þ
where the material constants c44, e11, and e15 are the elastic stiffness constant, dielectric constant, and

piezoelectric constant, respectively. The superscript i denotes materials 1 and 2. In the absence of body

forces and free charges, the equilibrium equation in terms of stresses and the Maxwell equation for electric
displacements are
o

or
ðrrðiÞ

rz Þ þ
o

oh
ðrðiÞ

hz Þ ¼ 0 ð2Þ

o

or
ðrDðiÞ

r Þ þ o

oh
ðDðiÞ

h Þ ¼ 0 ð3Þ
respectively. The shear strain–displacement relations are
cðiÞhz ¼
1

r
owðiÞ

oh
ð4aÞ

cðiÞrz ¼ owðiÞ

or
ð4bÞ
where w is the displacement in the z-direction. The electric field components are written in terms of the
inplane electric potential / as
EðiÞ
r ¼ � o/ðiÞ

or
ð5aÞ

EðiÞ
h ¼ � 1

r
o/ðiÞ

oh
ð5bÞ
Substituting (4) and (5) into (1) and using (2) and (3), the governing equations for antiplane displacement w
and inplane electric potential / are obtained as
cðiÞ44r2wðiÞ þ eðiÞ15r2/ðiÞ ¼ 0 ð6aÞ

eðiÞ15r2wðiÞ � eðiÞ11r2/ðiÞ ¼ 0 ð6bÞ

where r2 is two-dimensional Laplace operator in (r; h) as
r2 ¼ o2

or2
þ 1

r
o

or
þ 1

r2
o2

oh2
ð7Þ
Solving for w and / from (6), the results are
r2wðiÞ ¼ 0 ð8Þ
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r2/ðiÞ ¼ 0 ð9Þ

The stresses and electric displacements can be related to w and / by the following relations
rðiÞ
hz ¼

1

r
cðiÞ44

owðiÞ

oh

"
þ eðiÞ15

o/ðiÞ

oh

#
ð10aÞ

rðiÞ
rz ¼ cðiÞ44

owðiÞ

or
þ eðiÞ15

o/ðiÞ

or
ð10bÞ

DðiÞ
r ¼ eðiÞ15

owðiÞ

or
� eðiÞ11

o/ðiÞ

or
ð11aÞ

DðiÞ
h ¼ 1

r
eðiÞ15

owðiÞ

oh

"
� eðiÞ11

o/ðiÞ

oh

#
ð11bÞ
The boundary conditions on the edges of the wedge ðh ¼ �aÞ are as follows
rð1Þ
hz ðr; aÞ ¼ F dðr � hÞ ð12aÞ

rð2Þ
hz ðr;�aÞ ¼ F dðr � hÞ ð12bÞ

Dð1Þ
h ðr; aÞ ¼ Qdðr � hÞ ð12cÞ

Dð2Þ
h ðr;�aÞ ¼ Qdðr � hÞ ð12dÞ
where d is the Dirac–Delta function. Without loss of generality, the distance h satisfies the relation

a6 b6 h. The continuity conditions along the bonded interface (h ¼ 0�) and the interface crack are
wð1Þðr; 0Þ ¼ wð2Þðr; 0Þ; /ð1Þðr; 0Þ ¼ /ð2Þðr; 0Þ; 06 r6 a; b6 r < 1 ð13Þ

rð1Þ
hz ðr; 0Þ ¼ rð2Þ

hz ðr; 0Þ; Dð1Þ
h ðr; 0Þ ¼ Dð2Þ

h ðr; 0Þ; 06 r < 1 ð14Þ

On the crack surfaces, the traction-free and surface charge-free conditions are
rð1Þ
hz ðr; 0Þ ¼ rð2Þ

hz ðr; 0Þ ¼ 0; Dð1Þ
h ðr; 0Þ ¼ Dð2Þ

h ðr; 0Þ ¼ 0; a6 r6 b ð15Þ

It has been assumed that the crack is impermeable in (15).
3. Solutions

3.1. Antiplane displacements and inplane electric potentials

The Mellin transform method has been widely used to solve the physical problems when the governing

equations are expressed in polar coordinates. For a given function, F ðr; hÞ, the Mellin transform and its

inversion are defined as (Sneddon, 1972)
F ðp; hÞ ¼
Z 1

0

F ðr; hÞrp�1 dr ð16Þ

F ðr; hÞ ¼ 1

2pi

Z cþi1

c�i1
F ðp; hÞr�p dp ð17Þ
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where p is a complex transform parameter and the bar over the function F denotes the transformed

quantity. The constant Re½p� ¼ c defines the path of integration. Applying the Mellin transform with

integration by parts on (8), gives
d2wðiÞ

dh2
þ p2wðiÞ ¼ 0 ð18Þ
provided that (Sneddon, 1972)
rpþ1 ow
ðiÞ

or

�
� prpwðiÞ

�1
0

¼ 0 ð19Þ
The solutions of (18) for materials 1 and 2 are
wð1Þ ¼ C1ðpÞ cos phþ C2ðpÞ sin ph ð20Þ

wð2Þ ¼ C5ðpÞ cos phþ C6ðpÞ sin ph ð21Þ
where Ci ði ¼ 1; 2; 5; 6Þ are unknown functions of p. In a similar manner, the transformed electric potentials

may be obtained as
/
ð1Þ ¼ C3ðpÞ cos phþ C4ðpÞ sin ph ð22Þ

/
ð2Þ ¼ C7ðpÞ cos phþ C8ðpÞ sin ph ð23Þ
The functions C1, C2, C3, C4, C5, C6, C7 and C8 can be deduced from (12)–(15).

From (13) and (15), an unknown function f ðrÞ is defined as (Erdogan and Biricikoglu, 1973)
f ðrÞ ¼ o

or
wð1Þðr;
�

þ 0Þ � wð2Þðr;� 0Þ
�

ð24Þ
Substituting Eq. (13) into Eq. (24), yields
f ðrÞ ¼ 0; 06 r6 a; b6 r < 1 ð25Þ
The unknown function f ðrÞ is nonzero in the interval a6 r6 b. Also, the single-valuedness condition of

displacements requires that
Z b

a
f ðrÞdr ¼ 0 ð26Þ
In a similar manner, another unknown function gðrÞ for electric potential (Chen and Worswick, 2000) is

defined as
gðrÞ ¼ o

or
/ð1Þðr;
h

þ 0Þ � /ð2Þðr;� 0Þ
i

ð27Þ
with
gðrÞ ¼ 0; 06 r6 a; b6 r < 1 ð28Þ
Z b

a
gðrÞdr ¼ 0 ð29Þ
Substituting (10) and (11) into the boundary conditions (12) and then applying the Mellin transform on

both sides, result in
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cð1Þ44

owð1Þðp; aÞ
oh

þ eð1Þ15

o/
ð1Þðp; aÞ
oh

¼ Fhp ð30aÞ

cð2Þ44

owð2Þðp;�aÞ
oh

þ eð2Þ15

o/
ð2Þðp;�aÞ
oh

¼ Fhp ð30bÞ

eð1Þ15

owð1Þðp; aÞ
oh

� eð1Þ11

o/
ð1Þðp; aÞ
oh

¼ Qhp ð31aÞ

eð2Þ15

owð2Þðp;�aÞ
oh

� eð2Þ11

o/
ð2Þðp;�aÞ
oh

¼ Qhp ð31bÞ
Substituting (10) and (11) into continuity conditions (14) and then applying the Mellin transform, lead to
cð1Þ44

owð1Þðp; 0Þ
oh

þ eð1Þ15

o/
ð1Þðp; 0Þ
oh

¼ cð2Þ44

owð2Þðp; 0Þ
oh

þ eð2Þ15

o/
ð2Þðp; 0Þ
oh

ð32aÞ

eð1Þ15

owð1Þðp; 0Þ
oh

� eð1Þ11

o/
ð1Þðp; 0Þ
oh

¼ eð2Þ15

owð2Þðp; 0Þ
oh

� eð2Þ11

o/
ð2Þðp; 0Þ
oh

ð32bÞ
In addition, applying the Mellin transform on (24) and (27) respectively, the results become
Z b

a
f ðmÞmp dm ¼ �pðC1 � C5Þ ð33aÞ

Z b

a
gðmÞmp dm ¼ �pðC3 � C7Þ ð33bÞ
Substituting (20)–(23) into (30)–(32) and using (33), eight simultaneous equations are obtained for solving
the eight unknowns C1–C8. Since the intensity factors are the focus of this paper, we consider the electro-

elastic field of material 1 only. The solutions of C1, C2, C3 and C4 are
C1 ¼

R b
a gðmÞmp dm

� �
f1 �

R b
a f ðmÞmp dm

� �
f2

pf3
ð34aÞ

C2 ¼
hpf7f3 � f4 sinðpaÞ � f1

R b
a gðmÞmp dm

� �
þ f2

R b
a f ðmÞmp dm

� �h i
p cosðpaÞf3f4

ð34bÞ

C3 ¼

R b
a f ðmÞmp dm

� �
f5 �

R b
a gðmÞmp dm

� �
f6

pf3
ð34cÞ

C4 ¼
hpf8f3 � f4 sinðpaÞ � f5

R b
a f ðmÞmp dm

� �
þ f6

R b
a gðmÞmp dm

� �h i
p cosðpaÞf3f4

ð34dÞ
where
f1 ¼ �eð2Þ15 e
ð1Þ
11 þ eð1Þ15 e

ð2Þ
11 ð35aÞ
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f2 ¼ eð1Þ15 e
ð2Þ
15 þ eð2Þ

2

15 þ cð2Þ44 eð1Þ11

h
þ eð2Þ11

i
ð35bÞ
f3 ¼ eð1Þ
2

15 þ 2eð1Þ15 e
ð2Þ
15 þ eð2Þ

2

15 þ cð1Þ44

h
þ cð2Þ44

i
eð1Þ11

h
þ eð2Þ11

i
ð35cÞ
f4 ¼ eð1Þ
2

15 þ cð1Þ44 e
ð1Þ
11 ð35dÞ
f5 ¼ �cð2Þ44 e
ð1Þ
15 þ cð1Þ44 e

ð2Þ
15 ð35eÞ
f6 ¼ eð1Þ15 e
ð2Þ
15 þ eð2Þ

2

15 þ eð2Þ11 cð1Þ44

h
þ cð2Þ44

i
ð35fÞ
f7 ¼ eð1Þ15 Qþ eð1Þ11 F ð35gÞ
f8 ¼ eð1Þ15 F � cð1Þ44 Q ð35hÞ
Substituting (34) back into (20) and (21), and applying inverse Mellin transform on wð1Þ and /
ð1Þ
, the

displacement wð1Þ and the electric potential /ð1Þ in material 1 are given by
wð1Þ ¼ f7
f4

� �
1

2pi

Z cþi1

c�i1

sinðphÞ
p cosðpaÞ

� �
h
r

� �p

dp � f2
f3

� �
1

2pi

Z cþi1

c�i1

cosðphÞ
p

�
þ sinðpaÞ sinðphÞ

p cosðpaÞ

�

�
Z b

a
f ðmÞ m

r

� �p
dm

� �
dp þ f1

f3

� �
1

2pi

Z cþi1

c�i1

cosðphÞ
p

�
þ sinðpaÞ sinðphÞ

p cosðpaÞ

� Z b

a
gðmÞ m

r

� �p
dm

� �
dp

ð36Þ
/ð1Þ ¼ f8
f4

� �
1

2pi

Z cþi1

c�i1

sinðphÞ
p cosðpaÞ

� �
h
r

� �p

dp þ f5
f3

� �
1

2pi

Z cþi1

c�i1

cosðphÞ
p

�
þ sinðpaÞ sinðphÞ

p cosðpaÞ

�

�
Z b

a
f ðmÞ m

r

� �p
dm

� �
dp � f6

f3

� �
1

2pi

Z cþi1

c�i1

cosðphÞ
p

�
þ sinðpaÞ sinðphÞ

p cosðpaÞ

� Z b

a
gðmÞ m

r

� �p
dm

� �
dp

ð37Þ
The residue theorem and appropriate path of integration will be applied to solve for the integrals of (36)
and (37). Looking at the first integral of (36) and (37), the poles pn are computed from cosðpaÞ ¼ 0 as

follows
p�n ¼ � 2n� 1

2a
p; n ¼ 1; 2; . . . ;1 ð38Þ
The constant Re½p� ¼ c is chosen to satisfy the limiting conditions (19). It requires that the following

conditions should be satisfied:
r6 h; p�n < 0; c > Re½p�n� ð39Þ
rP h; pn > 0; c < Re½pn� ð40Þ
The constant c is chosen in the interval p�1 < c < p1.
Although (36) and (37) are valid for 06 r61, only the region a6 r6 b is considered. Using the residue

theorem, the first integral of (36) and (37) for r6 h are obtained as follows
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1

2pi

Z cþi1

c�i1

sinðphÞ
p cosðpaÞ

� �
h
r

� �p

dp ¼ �2

p

� �X1
n¼1

ð�1Þn

2n� 1

r
h

� �pn
sinðpnhÞ; r6 h ð41Þ
For the region a6 r6 b, the second integral of (36) and (37) can be divided into two integral regions ½a; r�
and ½r; b� (Shahani and Adibnazari, 2000) so that the residue theorem can be applied. Using the residue

theorem, the result is
1

2pi

Z cþi1

c�i1

cosðphÞ
p

�
þ sinðpaÞ sinðphÞ

p cosðpaÞ

� Z b

a
f ðmÞ m

r

� �p
dm

� �
dp

¼ 1

2pi

Z cþi1

c�i1

cosðphÞ
p

�
þ sinðpaÞ sinðphÞ

p cosðpaÞ

� Z r

a
f ðmÞ m

r

� �p
dm

�
þ

Z b

r
f ðmÞ m

r

� �p
dm

�
dp

¼
X1
n¼1

R r
a f ðmÞ m

r

	 
pn
dm�

R b
r f ðmÞ m

r

	 
�pn
dm

h i
cosðpna� pnhÞ

pna sinðpnaÞ
; a6 r6 b ð42Þ
In a similar manner, the third integral of (36) and (37) can be solved as
1

2pi

Z cþi1

c�i1

cosðphÞ
p

�
þ sinðpaÞ sinðphÞ

p cosðpaÞ

� Z b

a
gðmÞ m

r

� �p
dm

� �
dp

¼
X1
n¼1

R r
a gðmÞ m

r

	 
pn
dm�

R b
r gðmÞ m

r

	 
�pn
dm

h i
cosðpna� pnhÞ

pna sinðpnaÞ
; a6 r6 b ð43Þ
Substituting (41)–(43) into (36) and (37), the antiplane displacement and the inplane electric potential in the

region a6 r6 b of material 1 can be obtained as follows
wð1Þ ¼ f7
f4

� �
�2

p

� �X1
n¼1

ð�1Þn

2n� 1

r
h

� �pn
sinðpnhÞ�

f2
f3

� �X1
n¼1

R r
a f ðmÞ m

r

	 
pn
dm�

R b
r f ðmÞ m

r

	 
�pn
dm

h i
cosðpna� pnhÞ

pna sinðpnaÞ
þ

f1
f3

� �X1
n¼1

R r
a gðmÞ m

r

	 
pn
dm�

R b
r gðmÞ m

r

	 
�pn
dm

h i
cosðpna� pnhÞ

pna sinðpnaÞ
; a6 r6 b ð44Þ
/ð1Þ ¼ f8
f4

� �
�2

p

� �X1
n¼1

ð�1Þn

2n� 1

r
h

� �pn
sinðpnhÞþ

f5
f3

� �X1
n¼1

R r
a f ðmÞ m

r

	 
pn
dm�

R b
r f ðmÞ m

r

	 
�pn
dm

h i
cosðpna� pnhÞ

pna sinðpnaÞ
�

f6
f3

� �X1
n¼1

R r
a gðmÞ m

r

	 
pn
dm�

R b
r gðmÞ m

r

	 
�pn
dm

h i
cosðpna� pnhÞ

pna sinðpnaÞ
; a6 r6 b ð45Þ
Note that the functions f ðrÞ and gðrÞ are still unknown and will be solved in the next section.
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3.2. The functions f ðrÞ and gðrÞ

In this section, functions f ðrÞ and gðrÞ are solved in the region a6 r6 b. Substituting (44) and (45) into

(10)–(11) and using (15), we obtain the following two equations:
cð1Þ44 ½A1 � ðA2 � A3Þ þ ðA4 � A5Þ� þ eð1Þ15 A6

�
þ f5
f2
ðA2 � A3Þ �

f6
f1
ðA4 � A5Þ

�
¼ 0 ð46aÞ

eð1Þ15 ½A1 � ðA2 � A3Þ þ ðA4 � A5Þ� � eð1Þ11 A6

�
þ f5
f2
ðA2 � A3Þ �

f6
f1
ðA4 � A5Þ

�
¼ 0 ð46bÞ
or
A1 � ðA2 � A3Þ þ ðA4 � A5Þ ¼ 0 ð47aÞ

A6 þ
f5
f2
ðA2 � A3Þ �

f6
f1
ðA4 � A5Þ ¼ 0 ð47bÞ
where
A1 ¼
�f7
f4

� �
2

p

� �X1
n¼1

ð�1Þn

2n� 1

r
h

� �pn
pn ð48aÞ

A2 ¼
f2
af3

� �X1
n¼1

Z r

a
f ðmÞ m

r

� �pn
dm ð48bÞ

A3 ¼
f2
af3

� �X1
n¼1

Z b

r
f ðmÞ m

r

� ��pn
dm ð48cÞ

A4 ¼
f1
af3

� �X1
n¼1

Z r

a
gðmÞ m

r

� �pn
dm ð48dÞ

A5 ¼
f1
af3

� �X1
n¼1

Z b

r
gðmÞ m

r

� ��pn
dm ð48eÞ

A6 ¼
f8
f7
A1 ð48fÞ
The solutions of (47) are
f6
f1

�
þ f8
f7

�
A1 ¼

�f5
f2

�
þ f6
f1

�
ðA2 � A3Þ ð49Þ

f5
f2

�
þ f8
f7

�
A1 ¼

�f5
f2

�
þ f6
f1

�
ðA4 � A5Þ ð50Þ
Changing all series of (48) to begin with n ¼ 0 and substituting them into (49) and (50), the results are
f6
f1
þ f8

f7

� �
f7
f4

� �
f6
f1
� f5

f2

� �
f2
f3

� � r
h

� � p
2a
X1
n¼0

ð�1Þn r
h

� �np
a ¼

Z r

a

m
r

� � p
2a
X1
n¼0

m
r

� �np
a
f ðmÞdm�

Z b

r

r
m

� � p
2a
X1
n¼0

r
m

� �np
a
f ðmÞdm

ð51Þ
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f5
f2
þ f8

f7

� �
f9
f4

� �
f6
f1
� f5

f2

� �
f1
f3

� � r
h

� � p
2a
X1
n¼0

ð�1Þn r
h

� �np
a ¼

Z r

a

m
r

� � p
2a
X1
n¼0

m
r

� �np
a
gðmÞdm�

Z b

r

r
m

� � p
2a
X1
n¼0

r
m

� �np
a
gðmÞdm ð52Þ
The following mathematical derivations are similar to those used by Shahani and Adibnazari (2000). Eq.

(51) can be reduced to the following form
Z d

c

/ðtÞ
t � x

dt ¼ �f

f6
f1
þ f8

f7

� �
f7
f4

� �
f6
f1
� f5

f2

� �
f2
f3

� � ffiffiffi
e

p

eþ x
; c6 x6 d ð53Þ
where
f ¼ p=a; t ¼ mf; x ¼ rf; c ¼ af; d ¼ bf; e ¼ hf ð54aÞ

/ðtÞ ¼ tð1=f�1=2Þf ðt1=fÞ ð54bÞ

From the definition in (54), condition (26) becomes
Z d

c

/ðtÞ
t1=2

dt ¼ 0 ð55Þ
The solution of (53) for /ðxÞ is (Muskhelishvili, 1953; Shahani and Adibnazari, 2000)
/ðxÞ ¼ ½ðx� cÞðd � xÞ��1=2 B
�

� 1

p2

Z d

c
½ðt � cÞðd � tÞ�1=2 P ðtÞ

t � x
dt
�
; c6 x6 d ð56Þ
where
P ðtÞ ¼ �f

f6
f1
þ f8

f7

� �
f7
f4

� �
f6
f1
� f5

f2

� �
f2
f3

� � ffiffiffi
e

p

eþ t
ð57Þ
Eq. (56) can be reduced to
/ðxÞ ¼ ½ðx� cÞðd � xÞ��1=2 B

2
4 �

f6
f1
þ f8

f7

� �
f7
f4

� �
f6
f1
� f5

f2

� �
f2
f3

� � ffiffiffi
e

p

a
þ

f6
f1
þ f8

f7

� �
f7
f4

� �
f6
f1
� f5

f2

� �
f2
f3

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðcþ eÞðd þ eÞ

p
aðxþ eÞ

3
5; c6 x6 d

ð58Þ

The constant B in (58) is determined from the condition (55) on /ðxÞ as
B ¼
f6
f1
þ f8

f7

� �
f7
f4

� �
f6
f1
� f5

f2

� �
f2
f3

� � ffiffiffi
e

p

a
1

2
64 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcþ eÞðd þ eÞ

p R d
c

dt

ðtþeÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðt�cÞðd�tÞ

pR d
c

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðt�cÞðd�tÞ

p

3
75 ð59Þ
The final form of /ðxÞ becomes
/ðxÞ ¼
f6
f1
þ f8

f7

� �
f7
f4

� �
f6
f1
� f5

f2

� �
f2
f3

� � 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðcþ eÞðd þ eÞ

p 1

xþ e

�
� 1

d þ e
Pðk;m; p=2Þ
Kðk; p=2Þ

�
ðx½ � cÞðd � xÞ��1=2

; c6 x6 d

ð60Þ
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where
Pðk;m; p=2Þ ¼
Z p=2

0

dh

ð1þ m sin2 hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 h

p ð61aÞ

Kðk; p=2Þ ¼
Z p=2

0

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 h

p ð61bÞ

k2 ¼ d � c
d

; m ¼ � d � c
d þ e

ð61cÞ
Kðk; p=2Þ and Pðk;m; p=2Þ are the complete elliptic integrals of the first and third kinds respectively.

With the aid of (54), f ðrÞ is also obtained as the following closed-form (Shahani and Adibnazari, 2000):
f ðrÞ ¼
f6
f1
þ f8

f7

� �
f7
f4

� �
f6
f1
� f5

f2

� �
f2
f3

� � 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hfðaf þ hfÞðbf þ hfÞ

p 1

rf þ hf

�
� 1

bf þ hf
Pðk;m; p=2Þ
Kðk; p=2Þ

�
rðf=2Þ�1
	 


� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrf � afÞðbf � rfÞ

p ; a6 r6 b ð62Þ
where
k2 ¼ bf � af

bf
; m ¼ � bf � af

bf þ hf
ð63Þ
From (29) and (52), the function gðrÞ can be obtained in a similar way as follows
gðrÞ ¼
f5
f2
þ f8

f7

� �
f7
f4

� �
f6
f1
� f5

f2

� �
f1
f3

� � 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hfðaf þ hfÞðbf þ hfÞ

p 1

rf þ hf

�
� 1

bf þ hf
Pðk;m; p=2Þ
Kðk; p=2Þ

�
ðrðf=2Þ�1Þ

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrf � afÞðbf � rfÞ

p ; a6 r6 b ð64Þ
The relationship of functions f ðrÞ and gðrÞ can be shown as
gðrÞ ¼
f5
f2
þ f8

f7

� �
f2

f6
f1
þ f8

f7

� �
f1
f ðrÞ ð65Þ
3.3. Stresses, strains, electric displacements and electric fields

In the region a6 r6 b of material 1, the stresses and electric displacements are obtained by substituting

(44) and (45) into (10)–(11) respectively:
rð1Þ
hz ðr; hÞ ¼

F
r
½�X1 � X2 þ X3�; a6 r6 b ð66aÞ

Dð1Þ
h ðr; hÞ ¼ Q

r
½�X1 � X2 þ X3�; a6 r6 b ð66bÞ
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where
X1 ¼
2

p

X1
n¼1

ð�1Þn

2n� 1

r
h

� �pn
pn cosðpnhÞ ð67aÞ
X2 ¼ �
X1
n¼1

R r
a

m
r

	 
pnf �ðmÞdm
	 


sinðpnh� pnaÞ
a sinðpnaÞ

ð67bÞ
X3 ¼ �
X1
n¼1

R b
r

m
r

	 
�pnf �ðmÞdm
� �

sinðpnh� pnaÞ
a sinðpnaÞ

ð67cÞ
and
f ðrÞ ¼
f6
f1
þ f8

f7

� �
f7
f4

� �
f6
f1
� f5

f2

� �
f2
f3

� � f �ðrÞ ð68Þ
From (62), we see that function f �ðrÞ is independent of material properties. Using the constitutive equation

(1), we can obtain the relationships
cð1Þhz ¼ Dð1Þ
h eð1Þ15 þ rð1Þ

hz e
ð1Þ
11

eð1Þ
2

15 þ cð1Þ44 e
ð1Þ
11

ð69aÞ
Eð1Þ
h ¼ Dð1Þ

h cð1Þ44 � rð1Þ
hz e

ð1Þ
15

eð1Þ
2

15 þ cð1Þ44 e
ð1Þ
11

ð69bÞ
Substituting (66) into (69), the strains and electric fields in a6 r6 b of material 1 can be obtained,

respectively.

It is noticed that the stress field is independent of material properties and electric charge Q. Meanwhile,

the electric displacement field is independent of material properties and mechanical load F . This conclusion
is true when the following conditions are satisfied: (1) These two wedge angles are equal; (2) A pair of equal

longitudinal shear forces is applied at same distance; (3) Two equal electric charges are applied at same

distance.
The same conclusion was met in our previous study (Wei et al., 2002) for the same bimaterial piezo-

electric wedge without considering the interface crack. In this case the stress and electric displacement for

r6 h are as follows (Wei et al., 2002):
rð1Þ
hz ðr; hÞ ¼ rð2Þ

hz ðr; hÞ ¼
F
ra

h
p
2ar

p
2a h

p
a þ r

p
að Þ cos ph

2a

h2p
a þ r2pa þ 2hp

arpa cos ph
a

" #
ð70aÞ
Dð1Þ
h ðr; hÞ ¼ Dð2Þ

h ðr; hÞ ¼ Q
ra

h
p
2ar

p
2a h

p
a þ r

p
að Þ cos ph

2a

h
2p
a þ r

2p
a þ 2h

p
ar

p
a cos ph

a

" #
ð70bÞ
When we set a ¼ b in (66), the results are identical to (70). In the past, the results of several studies for

antiplane interface crack problems (Chen et al., 1997; Li and Fan, 2001) and bimaterial elastic wedge
problems with equal wedge angles (Erdogan and Gupta, 1975; Ma and Hour, 1989; Shahani and Adib-

nazari, 2000) also show that the stress field is independent of material properties.
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3.4. Intensity factors at interface crack tips

Eq. (66) show that the stress and electric displacement are uncoupled and independent of material

properties. Therefore, we define the stress and electric displacement intensity factors at the interface crack
tips (r ¼ a and r ¼ b) as follows (Erdogan and Gupta, 1975; Shahani and Adibnazari, 2000):
Kr
IIIðaÞ ¼ lim

r!aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr � aÞ

p
Ff �ðrÞ ð71aÞ

Kr
IIIðbÞ ¼ � lim

r!b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðb� rÞ

p
Ff �ðrÞ ð71bÞ

KD
IIIðaÞ ¼ lim

r!aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr � aÞ

p
Qf �ðrÞ ð72aÞ

KD
IIIðbÞ ¼ � lim

r!b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðb� rÞ

p
Qf �ðrÞ ð72bÞ
From the constitutive equation (1), the strain and electric field intensity factors become
KcðiÞ
III ðaÞ ¼

QeðiÞ15 þ F eðiÞ11

eðiÞ
2

15 þ cðiÞ44e
ðiÞ
11

lim
r!aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr � aÞ

p
f �ðrÞ ð73aÞ

KcðiÞ
III ðbÞ ¼ �QeðiÞ15 þ F eðiÞ11

eðiÞ
2

15 þ cðiÞ44e
ðiÞ
11

lim
r!b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðb� rÞ

p
f �ðrÞ ð73bÞ

KEðiÞ
III ðaÞ ¼ QcðiÞ44 � FeðiÞ15

eðiÞ
2

15 þ cðiÞ44e
ðiÞ
11

lim
r!aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr � aÞ

p
f �ðrÞ ð73cÞ

KEðiÞ
III ðbÞ ¼ � QcðiÞ44 � FeðiÞ15

eðiÞ
2

15 þ cðiÞ44e
ðiÞ
11

lim
r!b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðb� rÞ

p
f �ðrÞ ð73dÞ
where i ¼ 1; 2 for materials 1 or 2. Eq. (73) show the coupling behaviors between mechanical and electric

effects.

The asymptotic behaviors of f �ðrÞ as r approaches a and b are important for obtaining intensity factors

in (71)–(73). Fig. 2 plots the variation of function f �ðrÞ from r ¼ a ¼ 0:01 m to r ¼ b ¼ 0:02 m when

a ¼ p=2, and h ¼ 0:03 m. There are two singularities at crack tips. This function can be used to get the

relative crack opening displacement via Eq. (62), i.e.,
wð1Þðr;þ0Þ � wð2Þðr;�0Þ ¼
Z r

a
f ðmÞdm; a6 r6 b ð74Þ
According to previous works (Erdogan and Gupta, 1975; Shahani and Adibnazari, 2000), the function

f �ðrÞ can be shown as
f �ðrÞ ¼ F �ðafÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
faðbf � afÞ

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � aÞ

p ½1þOðr � aÞ�; 0 < ðr � aÞ � ðb� aÞ ð75aÞ

f �ðrÞ ¼ F �ðbfÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fbðbf � afÞ

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� rÞ

p ½1þOðb� rÞ�; 0 < ðb� rÞ � ðb� aÞ ð75bÞ
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Fig. 2. Variations of function f �ðrÞ with r for a ¼ 0:01 m, b ¼ 0:02 m, h ¼ 0:03 m and a ¼ p=2.
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where � �

F �ðrfÞ ¼ 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hfðaf þ hfÞðbf þ hfÞ

p 1

rf þ hf
� 1

bf þ hf
Pðk;m; p=2Þ
Kðk; p=2Þ ; a6 r6 b ð76Þ
The higher order terms in (75) will not affect the intensity factors and can be ignored.
3.5. Energy density theory

It is known that simply considering the stress intensity factor by itself is not sufficient to explain the

fracture behavior in piezoelectric materials. For studying the crack problem, two criteria are commonly

employed: energy release rate criterion and energy density theory (Shen and Nishioka, 2000; Zuo and Sih,

2000; Soh et al., 2001). Lin et al. (2003) compared the results yielded by these two criteria for a piezoelectric

layered composite with a permeable and impermeable crack normal to interface. In the impermeable case,

when a larger electric field is applied either in a positive or negative direction, the total potential energy
release rate decreases and eventually arrests the crack growth. However, experimental investigation has not

confirmed this crack-arresting behavior (Park and Sun, 1995; Shindo et al., 2002).

The energy density dW
dV near the crack tip under antiplane mechanical loads and inplane electric loads can

be expressed by
dW
dV

¼ S
r1

¼ 1

2
ðrr1z1cr1z1 þ rh1z1ch1z1 þ Dr1Er1 þ Dh1Eh1Þ ð77Þ
where ðr1; h1Þ is the localized coordinate system at crack tip B shown in Fig. 1. The near-field quantities near

the interface crack tip B can be expressed as (Pak, 1990)
rr1z1 ¼
Kr

IIIffiffiffiffiffiffiffiffiffi
2pr1

p sin
h1
2

ð78Þ

rh1z1 ¼
Kr

IIIffiffiffiffiffiffiffiffiffi
2pr1

p cos
h1
2

ð79Þ

cðiÞr1z1 ¼
KcðiÞ

IIIffiffiffiffiffiffiffiffiffi
2pr1

p sin
h1
2

ð80Þ
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cðiÞh1z1 ¼
KcðiÞ

IIIffiffiffiffiffiffiffiffiffi
2pr1

p cos
h1
2

ð81Þ

Dr1 ¼
KD

IIIffiffiffiffiffiffiffiffiffi
2pr1

p sin
h1
2

ð82Þ

Dh1 ¼
KD

IIIffiffiffiffiffiffiffiffiffi
2pr1

p cos
h1
2

ð83Þ

EðiÞ
r1

¼ KEðiÞ
IIIffiffiffiffiffiffiffiffiffi
2pr1

p sin
h1
2

ð84Þ

EðiÞ
h1

¼ KEðiÞ
IIIffiffiffiffiffiffiffiffiffi
2pr1

p cos
h1
2

ð85Þ
where i is for materials 1 or 2. Substituting (78)–(85) into (77), we obtain
dW
dV

� �ðiÞ

¼ SðiÞ

r1
¼ 1

4pr1
Kr

IIIK
cðiÞ
III

h
þ KD

IIIK
EðiÞ
III

i
ð86Þ
or
SðiÞ ¼ 1

4p
Kr

IIIK
cðiÞ
III

h
þ KD

IIIK
EðiÞ
III

i
ð87Þ
Note that the energy density factors SðiÞ are independent of h1 in materials 1 or 2.

In the previous study, Sih (1973) discussed the Mode III crack propagation of isotropic media by using

the strain energy density factor S ¼ a33k23 . S is independent of h, an angle measured counterclockwise from

crack surface (x-axis). Chen and Chue (2003) found the same conclusions for Mode III crack propagation

in piezoelectric media.
4. Results and discussions

The effects of the wedge angle, interface crack location and crack length on the stress and electric dis-

placement intensity factors are discussed in the following section. Due to similar forms of stress intensity

factor Kr
III and electric displacement intensity factor KD

III, we use K� to replace Kr
III=F and KD

III=Q. Two
typical piezoelectric ceramics PZT-4 and PZT-5H are considered to show the variations of intensity factors

around crack tips A and B. The material properties are c44 ¼ 2:56� 1010 N/m2, e15 ¼ 12:7 C/m2,

e11 ¼ 64:6� 10�10 C/Vm for PZT-4 and c44 ¼ 2:3� 1010 N/m2, e15 ¼ 17 C/m2, e11 ¼ 150:4� 10�10 C/Vm for

PZT-5H.

4.1. Effects of wedge angle

Fig. 3 plots the variations of K�ðaÞ and K�ðbÞ with wedge angle a for crack length ðb� aÞ ¼ 0:01 m and

0.005 m when a ¼ 0:01 m and h ¼ 0:03 m. The wedge angles (defined as aC) with equal intensity factors of

crack tips A and B are 0:37p and 0:40p for crack length 0.01 m and 0.005 m, respectively. It is observed that
K�ðaÞ > K�ðbÞ for a > aC and K�ðaÞ reaches its maximum when a ¼ aC. However, when a < aC, the

intensity factor K�ðbÞ reaches its maximum and is greater than K�ðaÞ.



Fig. 3. Variation of the intensity factors K�ðaÞ and K�ðbÞ with a at different crack length ðb� a) when a ¼ 0:01 m and h ¼ 0:03 m.
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Fig. 4. Variation of the intensity factors K�ðaÞ and K�ðbÞ with a at different wedge angle when b� a ¼ 0:005 m and h ¼ 0:03 m.
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4.2. Effects of interface crack location

Consider the case of crack length 0.005 m and h ¼ 0:03 m. From the previous section, we know that

aC ¼ 0:40p. Fig. 4 shows the variations of K�ðaÞ and K�ðbÞ with distance r ¼ a. Intensity factors K�ðaÞ and
K�ðbÞ decrease for larger distance a when the wedge angle (such as a ¼ p=2, p) is greater than aC. On the

contrary, the intensity factors increase for larger a when a < aC. It also can be seen that K�ðaÞ is unbounded
if the crack tip (point A) approaches the wedge apex.
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Fig. 5. Variation of the intensity factors K�ðaÞ and K�ðbÞ with crack length ðb� aÞ at different wedge angle when a ¼ 0:01 m and

h ¼ 0:03 m.
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4.3. Effects of interface crack length

Under the conditions of a ¼ 0:01 m and h ¼ 0:03 m, Fig. 5 plots the distributions of intensity factors

with crack length ðb� aÞ at different wedge angle a. The results show that K�ðaÞ and K�ðbÞ increase for
longer crack length.
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