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Abstract

The antiplane electro-elastic field for a bimaterial piezoelectric wedge with an interface crack subjected to a pair of
concentrated forces and surface charges is studied in this paper. Based on the Mellin transform and the singular integral
equation, the stress, strain, electric displacement, electric field intensity factors at both crack tips are derived analyti-
cally. These parameters can be applied to examine the fracture behavior of the interface crack. The results are validated
when the problem is reduced to some simple cases studied in previous open literatures.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to the capability of the transfer between mechanical and electric energy, piezoelectric materials are
widely used in smart structures, sensors, and actuators. These structures usually involve wedge shape
structures at some local regions, where the geometry and material are discontinuous. The singular stress
field may occur at the wedge apex where the crack initiates.

Antiplane deformation problems of isotropic and anisotropic elastic wedges have been studied in the
past (Erdogan and Gupta, 1975; Ma and Hour, 1989; Kargarnovin et al., 1997; Shahani, 1999; Shahani and
Adibnazari, 2000; Shahani, 2001; Chue and Liu, 2001). Xu and Rajapakse (2000) and Chue and Chen
(2002, 2003) solved the stress singularities for a multi-material wedge bonded by composites, electrodes,
and piezoelectric materials. Wei et al. (2002) and Chue et al. (2003) used the Mellin transform to obtain the
antiplane electro-elastic field and intensity factors of the single-material and bimaterial piezoelectric wedges
subjected to a pair of concentrated forces and free charges.
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The existence of cracks in bimaterial wedges cannot be completely avoided. In reality, cracks may occur
on the interface of two bonded wedges due to debonding. Erdogan and Gupta (1975) used the Mellin
transform and the singular integral equation to study the interface crack in a bimaterial elastic wedge under
antiplane loadings applied at crack faces. Shahani and Adibnazari (2000) studied similar bimaterial elastic
wedges under a pair of concentrated antiplane forces applied at wedge edges. In their paper, the problems
of bonded wedges with an interface crack and the related cases were studied. A screw dislocation f(r) was
proposed to solve the stress components, singularity orders, and intensity factors. More recently, Shahani
(2001) examined the behavior of f(r) when one of the interface crack tips approaches the wedge apex.

In this paper, we study the antiplane deformation of the bimaterial piezoelectric wedge with an interface
crack subjected to a pair of antiplane concentrated forces and inplane electric surface charges. The intensity
factors of stress, strain, electric displacement and electric fields at crack tips are derived analytically.

Early in 1990, Pak studied the crack behavior in a piezoelectric material and considered the crack to be
impermeable; filled with a vacuum or a nonconducting gas. Zhang et al. (2002) and Zhang and Tong (1996)
theoretically studied the electrically impermeable and permeable boundary conditions. In addition, the
electric boundary conditions, in particular, for a mode III crack in a piezoelectric material were discussed in
detail by Zhang and Tong (1996). As described in the review article (Zhang et al., 2002), the electrically
impermeable and permeable boundary conditions are two extreme approximations for an electrically
insulated crack. A recent experimental work (Schneider et al., 2003) indicates that the permeable boundary
conditions are more reasonable than the impermeable boundary conditions.

However, due to the mathematical difficulties posed by applying the Mellin transform to the piezoelectric
wedge problem with an interface crack, the crack is assumed to be impermeable for this study.

2. Problem statements and basic formulations

The structure shown in Fig. 1 is composed of two bonded piezoelectric wedges with same wedge angle «
and an interface crack AB located on the common edge (6 = 0°) between » = a and r = b. The crack
surfaces are traction-free and impermeable (Pak, 1990). A pair of longitudinal shearing forces F and an-
other two inplane surface charges Q are applied on the edges » = 4. Because the wedge has an infinite length
along the z-axis, this problem becomes a generalized plane deformation problem. Since the piezoelectric

F,.Q (=h

Material 2

F.Q (=h

Fig. 1. Configuration of a bimaterial piezoelectric wedge with an interface crack.
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materials are polarized in the z-direction, only the antiplane elastic field coupled with the inplane electric
field is considered in the analysis. The field quantities include the shear stresses (o,.,0y.), shear strains
(7,25 vo.), elastic deformation (w), electric displacements (D,, Dy), electric fields (E,, Ey) and electric potential
(¢). They are functions of r and 6 only.

The constitutive equations of this antiplane problem can be written as follows

o ch 00—l [y

ol | _ |0 g =i 0 |2

o= 0 0 ol =12 (1)
D r 0 e5 & 0 Er'

Dg)') 3(12 0 0 92? E(()’)

where the material constants ca4, €1, and e;s are the elastic stiffness constant, dielectric constant, and
piezoelectric constant, respectively. The superscript i denotes materials 1 and 2. In the absence of body
forces and free charges, the equilibrium equation in terms of stresses and the Maxwell equation for electric
displacements are

0

2 o)+ (o) = 0 @)

2 00y + () = 0 6
respectively. The shear strain—displacement relations are

=12 (4a)

ﬂ?=639 (4b)

where w is the displacement in the z-direction. The electric field components are written in terms of the
inplane electric potential ¢ as

) @(]S(i)
ED — _ 5
’ or (5a)
: 1 0¢"
Ey) =~ 5b
0 r 00 (5b)

Substituting (4) and (5) into (1) and using (2) and (3), the governing equations for antiplane displacement w
and inplane electric potential ¢ are obtained as

VW0 4 1290 = 0 (6a)

e iV — V29 =0 (6b)
where V? is two-dimensional Laplace operator in (7, 0) as

? 12 1@

2_ 0 o0 Y
v_aﬂ ror  r*op?

(7)
Solving for w and ¢ from (6), the results are

V2wl =0 (8)
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Vi =0 9)
The stresses and electric displacements can be related to w and ¢ by the following relations
i l i aW(l) i ad)(l)
o = s 2 (100
) _ w0
o) = 226— H o (10b)
; sowd 0
D) = (u)ﬁ—g(n) 3 (11a)
i 1] g owt i a(f’(i)
op =4[ o)
The boundary conditions on the edges of the wedge (68 = +o) are as follows
JE)]Z)(F, o) =Fé(r—h) (12a)
o) (r,—a) = Fo(r — h) (12b)
DY (r,x) = Qd(r — h) (12¢)
DY (r, —a) = Q8(r — h) (12d)

where 0 is the Dirac-Delta function. Without loss of generality, the distance # satisfies the relation
a < b < h. The continuity conditions along the bonded interface (§ = 0°) and the interface crack are

w(r,0) =w@(r,0), ¢V (r,0)=¢?(0), 0<r<a, b<r<oo (13)

ol (r,0) = a\P (r,0), D{(r,0) =Dy (r,0), 0<r<oo (14)
On the crack surfaces, the traction-free and surface charge-free conditions are
o (r,0) = a2 (r,0) =0, D (r,0)=DP(r,0)=0, a<r<b (15)

It has been assumed that the crack is impermeable in (15).
3. Solutions
3.1. Antiplane displacements and inplane electric potentials
The Mellin transform method has been widely used to solve the physical problems when the governing

equations are expressed in polar coordinates. For a given function, F(r,0), the Mellin transform and its
inversion are defined as (Sneddon, 1972)

F(p,0) = /3C F(r,0) ' dr (16)
0
F(r,0) = 2%“ /j I% F(p,0)r?dp (17)
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where p is a complex transform parameter and the bar over the function F denotes the transformed
quantity. The constant Re[p] = ¢ defines the path of integration. Applying the Mellin transform with
integration by parts on (8), gives

d>

g T =0 (18)
provided that (Sneddon, 1972)
owl N
e — P — 1
o P 0 (19)
The solutions of (18) for materials 1 and 2 are
W) = C\(p) cos pl + Cs(p) sin p0 (20)
w2 = Cs(p) cos p + Cs(p) sin p0 (21)

where C; (i = 1,2,5,6) are unknown functions of p. In a similar manner, the transformed electric potentials
may be obtained as

s = C3(p) cos pd + C4(p) sin p0) (22)

3% = C5(p) cos p0 + Cy(p) sin p0 (23)

The functions Cy, C,, C3, Cy4, Cs, Cg, C; and Cg can be deduced from (12)—(15).
From (13) and (15), an unknown function f(r) is defined as (Erdogan and Biricikoglu, 1973)

£0) = 2 [0, +0) — wr, — 0)] (24)
I
Substituting Eq. (13) into Eq. (24), yields
f(r)=0, 0<r<a, b<r<oo (25)

The unknown function f(r) is nonzero in the interval a <r <b. Also, the single-valuedness condition of
displacements requires that

/ f(rdr=0 (26)

In a similar manner, another unknown function g(r) for electric potential (Chen and Worswick, 2000) is
defined as

8() = 2 [0+ 0) — 7, —0) 27)
with

g(r)=0, 0<r<a, b<r<oo (28)

[ etnar=o (29)

Substituting (10) and (11) into the boundary conditions (12) and then applying the Mellin transform on
both sides, result in
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' (pw) | 108" (p,a)
¢y 30 +ell 0 - Fn? (30a)

- —(2)
2) aw(z)(p, —OC) 2) 6(;5 (p, —(Z)

Cas 20 + e 20 = Fi’ (30b)
wl(p,a) 109" (p,a)

Ay ey = O (31a)
aW(Z)(pa _OC) aa(a (pv —OC)

A e g = O (31b)

Substituting (10) and (11) into continuity conditions (14) and then applying the Mellin transform, lead to

w(p,0) 1,6 (1,0)  5W0(p,0) 08" (p,0)

. —(1) _ —(2)
0 W (p,0) L ¢ ' (p,0) _ L0 ow? (p,0) _ 0 99 " (p,0) (32b)
15 o0 11 00 15 00 1 00

In addition, applying the Mellin transform on (24) and (27) respectively, the results become

[ ronedr=—piei - ¢y (33a)

/ g dv = —p(Cs — C) (33b)

Substituting (20)—(23) into (30)—(32) and using (33), eight simultaneous equations are obtained for solving
the eight unknowns C;—Cs. Since the intensity factors are the focus of this paper, we consider the electro-
elastic field of material 1 only. The solutions of C;, C,, C; and C, are

(7 gpeav)fi = (700w av)s

“- ol .

o, _ 1 = fusin(o)] - fp(cisz;())f ;v) + £ 7w d)] a

o (e dV)fsp;3 (J2 g av) i ”

o, _ 1PAfs— fisinip) |~ f;(cff (f,g)fzf 4dv) +f5( [} srwar)] )
where

2) (1 e
fi= _e§5>8§1) + e§5>8§1) (35a)
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o el el + e+ o] o)
e+ el e+ [l ][40+ ] (359
fo= el 4 cfel) (35d)
fi = —cierd + e (35¢)
N _eIS 615 +e]25) "‘951 {044 +C44} (35f)
=30 +aF (359)
fy = elyF =)o (35h)

Substituting (34) back into (20) and (21), and applying inverse Mellin transform on w!" and 5(1) the
displacement w(") and the electric potential ¢'" in material 1 are given by

"= (5) 5 / o) (1) = (2) s [ [+ e
[ LGyl (F)m [ a1 Gy ol

(36)
o= (%) am /fff e () o (B) 3 [ [ ™
[ LGy el (£)m [ [ T ] ) el
(37)

The residue theorem and appropriate path of integration will be applied to solve for the integrals of (36)
and (37). Looking at the first integral of (36) and (37), the poles p, are computed from cos(pxz) =0 as
follows
2n—1

2a ’ ) LA

The constant Re[p] = ¢ is chosen to satisfy the limiting conditions (19). It requires that the following
conditions should be satisfied:

r<h, p,<0, ¢>Relp,] (39)

P+n = + 0 (38)

r=zh, p,>0, c¢<Relp,) (40)

The constant ¢ is chosen in the interval p_| < ¢ < py.
Although (36) and (37) are valid for 0 < r < 0o, only the region a < » < b is considered. Using the residue
theorem, the first integral of (36) and (37) for » < & are obtained as follows
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i [ e (1) 9= (3) & 55 (1) smtnn. - 2

c—100

For the region a < r < b, the second integral of (36) and (37) can be divided into two integral regions [a, 7]
and [r, b] (Shahani and Adibnazari, 2000) so that the residue theorem can be applied. Using the residue
theorem, the result is

wi o [ e L dv} "
s [ [ s [ (3 [
:i[ff v)(2)" dv—{?nojzsmgpﬂ))dv}cos(poc—pn)7 eres "

In a similar manner, the third integral of (36) and (37) can be solved as
1[5 [cos(pf) = sin(pa)sin(p0) b VP
21 Jeing [ p | peosip) / g(v)(;> drjdp
_zoo:[f;()()dv—fg v)(2)™" dv}cos(poc—pn)

‘— paocsin(p,a)

, a<r<b (43)

Substituting (41)—(43) into (36) and (37), the antiplane displacement and the inplane electric potential in the
region a < r < b of material 1 can be obtained as follows

o (E)(2)E 52 G s

[ff () v = [T 0(;) dv}cos(po«—m

(fs) i P i

(5 T e
(1) Z) S G s

(%)2 oy dv_ﬁnfsm( ,,)> dv) cos(pia—p)

Db e R

Note that the functions f(r) and g(r) are still unknown and will be solved in the next section.
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3.2. The functions f(r) and g(r)

In this section, functions f(r) and g(r) are solved in the region a < » < b. Substituting (44) and (45) into
(10)—(11) and using (15), we obtain the following two equations:

Ay — (Ay — A3) + (Ag — 45)] + €l [AH—;S( —43) —%(m A )} =0 (46a)

el = (s = 43) + (s = 45)] = ) o+ (s — ) — T2 s = )| =0 (46b)
or

Ay — (A2 — A3) + (44 — 45) =0 (47a)

As +%(A2 —43) _%(A4 —45)=0 (47b)
where

= (F)G) a6 (48a)

A, = (53) 2 /arf(v)(;)pndv (48b)

Ay = (;;2) i /rbf(v)(i)”"dv (48¢)

Ay = (%}3) zoc: /arg(v)<;)pndv (48d)

As = (%}3) zoc; /rb g(v)(;)ip“dv (48e)

Ag :%A1 (48f)
The solutions of (47) are

(o (s

()= (G 7 Joaa o )

Changing all series of (48) to begin with n = 0 and substituting them into (49) and (50), the results are

A G- [ ()5 () row [ (G5 o

(51)
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B 05 = [ P R - [ G E e o

The following mathematical derivations are similar to those used by Shahani and Adibnazari (2000). Eq.
(51) can be reduced to the following form

fs 8 f1
d¢0)dﬁ_—c(h+ﬁ)(ﬂ) Ve . c<x<a (53)
S COEE
N f /3
where
{=n/a, t=V, x=r c=d, d=0b, e=h (54a)
¢(1) = (VAL (54b)
From the definition in (54), condition (26) becomes
“9(t)
ra dr = (55)
The solution of (53) for ¢(x) is (Muskhelishvili, 1953; Shahani and Adibnazari, 2000)
1 [? P(t
¢@):Kx_cxd—@]”ﬂg—;i/im—¢xd—or”7éldt, c<x<d (56)
where
fe L fs f1
= U2 )(E) Ve (57)
(/6 5 ) (/_) e+t
o f f

Eq. (56) can be reduced to

] el FHEE) Veero@d+e)
$x) =[x~ )(d —x)] [B—(%_%>(%> + E;;gg;; a(t+e)+ } c<x<d
(58)
The constant B in (58) is determined from the condition (55) on ¢(x) as
_EB)E) |, ey e -
The final form of ¢(x) becomes
e E ggffg cleraldra x%l—e_d—ll—eHI((l?kr,n;;IZ/)z) [(x—c)(d—x)]""? c<x<d
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where
n/2 0
H(k,m,n/Z):/ d (61a)
0 (1+msin®0)V1 —k2sin® 0
T e (61)
K(k,7/2) = / 4
0 V1 —k2sin’0
d—c d—c
2 _ e
k™ = B m= dTe (61c)

K(k,m/2) and II(k,m,n/2) are the complete elliptic integrals of the first and third kinds respectively.
With the aid of (54), f(r) is also obtained as the following closed-form (Shahani and Adibnazari, 2000):

fr) = E}Tf/fﬁ) ( ) é\/h‘f(ai + h) (b + )

fo _ S5,
N )\ NS

X a<r<b (62)
(7= a) B =)

1 _ L H(k,m,7/2) (r(g/z)fl)
R b+ K(k,m)2)

>

>~

—_—

where

b — ot b — at
2 _ —
K== "= pin (63)

From (29) and (52), the function g(r) can be obtained in a similar way as follows

Lo B8 f
—+—->(—-) 1 1 1 Ik
_ f2 1 fa - 3 - - 3 3 _ ( 7m7n/2) (¢/2)-1
()= (.&,f;)(g) o VI B )| e — Kk |0
ho r /3
X ! a<r<b (64)

(¥ —ab) (b" — rc)’

The relationship of functions f(r) and g(r) can be shown as

/5 /3
(£+4)n

g(r) = (£+2)5

3.3. Stresses, strains, electric displacements and electric fields

In the region a < r < b of material 1, the stresses and electric displacements are obtained by substituting
(44) and (45) into (10)—(11) respectively:

F
o (r.0) =~ [-Xi ~Xo + X3, a<r<b (66a)

Dy(r,0) =%[—Xl X, +Xi), a<r<b (66b)
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where
X :% ZOO: 2(;1)1 (%)p”pn cos(p,0) (67a)
Sy (2)"(v) dv) sin(pa0 — paer)
ooy (LG it o
(7 (2) " (v)dv) sin(p,0 — p,)
X = _; ( ocsin(p?,oc) (67¢)

and

_ )\ () (68)
00

i R)\A
From (62), we see that function f*(r) is independent of material properties. Using the constitutive equation
(1), we can obtain the relationships

n_m (1) (1)
y_ Dy eﬁs + 0y e

(

V() - 2 (69&)
(1 ) (1
elS) +cz<14>5(11)
(1) (1 (1

ED — Dy ciy — 0y €15 (69b)

o + el
Substituting (66) into (69), the strains and electric fields in a <r<b of material 1 can be obtained,
respectively.

It is noticed that the stress field is independent of material properties and electric charge Q. Meanwhile,
the electric displacement field is independent of material properties and mechanical load F. This conclusion
is true when the following conditions are satisfied: (1) These two wedge angles are equal; (2) A pair of equal
longitudinal shear forces is applied at same distance; (3) Two equal electric charges are applied at same
distance.

The same conclusion was met in our previous study (Wei et al., 2002) for the same bimaterial piezo-
electric wedge without considering the interface crack. In this case the stress and electric displacement for
r< h are as follows (Wei et al., 2002):

1 2 F hﬂl"%(}ﬁ —+ l’%) COS%
o (n0) = 0 0) = | o (70a)

nomo g .4 0

(1) NG . Q ther(hy +r7)COSZ—“
Dy (r,0) = Dy’ (r, 0) = ro | K% + 7% + 2k cos ™ (700)

When we set a = b in (66), the results are identical to (70). In the past, the results of several studies for
antiplane interface crack problems (Chen et al., 1997; Li and Fan, 2001) and bimaterial elastic wedge
problems with equal wedge angles (Erdogan and Gupta, 1975; Ma and Hour, 1989; Shahani and Adib-
nazari, 2000) also show that the stress field is independent of material properties.
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3.4. Intensity factors at interface crack tips
Eq. (66) show that the stress and electric displacement are uncoupled and independent of material

properties. Therefore, we define the stress and electric displacement intensity factors at the interface crack
tips (r = @ and r = b) as follows (Erdogan and Gupta, 1975; Shahani and Adibnazari, 2000):

K{y(a) = lim /2n(r — a)Ff*(r (71a)

r—a+

Kj;(b) = — lim /2n(b — r)Ef*(r (71b)

r—b—
Kiy(a) = hm V2n(r—a)Of(r (72a)
Kiy(b) = — lim /2n(b — r)Of " (r) (72b)

From the constitutive equation (1), the strain and electric field intensity factors become

) 4 e
e,s + 1€ .
Q 15 11 lim

Kiif (@) = 53— lim /2n(r = a)f" (1) (73a)
€5 T Culy
i Qe -I—FS() . y
Kiiy (0) = === lim /22(b = )" (1) (73b)
es t+c¢ 44811
E(i) Ocy — Pl \
Ki (@) = 2408 i /o= a)f () (73¢)
elS +c 44?11
E(i) Ocy — Pl \
Ky '(b) = —m}g}} 2n(b —r)f"(r) (73d)
€5t Culy

where i = 1,2 for materials 1 or 2. Eq. (73) show the coupling behaviors between mechanical and electric
effects.

The asymptotic behaviors of f*(r) as r approaches a and b are important for obtaining intensity factors
in (71)—(73). Fig. 2 plots the variation of function f*(r) from r =a =0.01 m to r =5 = 0.02 m when
o =mn/2, and h = 0.03 m. There are two singularities at crack tips. This function can be used to get the
relative crack opening displacement via Eq. (62), i.e.,

D, 40) — w(r, —0) = / v, a<r<b (74)

According to previous works (Erdogan and Gupta, 1975; Shahani and Adibnazari, 2000), the function
f*(r) can be shown as

“(r) = F*(a" ! ! r—a r—a —a
() =F( )\/ca(bé—al) N [1+0(r—a), 0<(r—a)<(b-a) (75a)
1 1

fi(r) = F*(b*) 14+0b-r)], 0<(b-r)<(b-a) (75b)

V(BT —db) /(b —7)
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Fig. 2. Variations of function f*(r) with r for @ =0.01 m, » =0.02 m, 2 =0.03 m and o = /2.

where

F(r¥) = é\/hi(al +ht)(b° + k)

1 HI(k,m,7/2)
R b+ rt Kk,m/2) |
The higher order terms in (75) will not affect the intensity factors and can be ignored.

a<r<b (76)

3.5. Energy density theory

It is known that simply considering the stress intensity factor by itself is not sufficient to explain the
fracture behavior in piezoelectric materials. For studying the crack problem, two criteria are commonly
employed: energy release rate criterion and energy density theory (Shen and Nishioka, 2000; Zuo and Sih,
2000; Soh et al., 2001). Lin et al. (2003) compared the results yielded by these two criteria for a piezoelectric
layered composite with a permeable and impermeable crack normal to interface. In the impermeable case,
when a larger electric field is applied either in a positive or negative direction, the total potential energy
release rate decreases and eventually arrests the crack growth. However, experimental investigation has not
confirmed this crack-arresting behavior (Park and Sun, 1995; Shindo et al., 2002).

The energy density §7 near the crack tip under antiplane mechanical loads and inplane electric loads can
be expressed by

1
C(ii_V;/ = % = D) (0r121 Viz T 00,2%0,, T D, E, + D91E91) (77)
where (71, 0,) is the localized coordinate system at crack tip B shown in Fig. 1. The near-field quantities near
the interface crack tip B can be expressed as (Pak, 1990)
]{'7 . 0]

= Y1 78

O = i siny (78)
Ki; 0,

. = — 79

Oo,z, T cos 5 (79)

(80)
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0, \/m cos 2 ( )
N
g6 — 2 i 2L 84
" \/m Sin > ( )
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0= s ©053 (85)
where 7 is for materials 1 or 2. Substituting (78)—(85) into (77), we obtain
dW @ S<[) 1 o (i E(i
(W) = 7 = E [KIIIKf1<I) + KIDIIKIIE )} (86)
or
i 1 o (i i
s = 4n |:KIIIKII(I) +K31Kﬁi)i| (87)

Note that the energy density factors S are independent of 6, in materials 1 or 2.

In the previous study, Sih (1973) discussed the Mode III crack propagation of isotropic media by using
the strain energy density factor S = as3343. S is independent of 6, an angle measured counterclockwise from
crack surface (x-axis). Chen and Chue (2003) found the same conclusions for Mode III crack propagation
in piezoelectric media.

4. Results and discussions

The effects of the wedge angle, interface crack location and crack length on the stress and electric dis-
placement intensity factors are discussed in the following section. Due to similar forms of stress intensity
factor K{j; and electric displacement intensity factor Kj};, we use K* to replace K;/F and Kj};/0. Two
typical piezoelectric ceramics PZT-4 and PZT-5H are considered to show the variations of intensity factors
around crack tips A and B. The material properties are cy = 2.56 x 10'° N/m?, e;5 = 12.7 C/m?,
&1 = 64.6 x 1071 C/Vm for PZT-4 and cuy = 2.3 x 10'° N/m?, e;5 =17 C/m?, ¢;; = 150.4 x 1071 C/Vm for
PZT-5H.

4.1. Effects of wedge angle

Fig. 3 plots the variations of K*(a) and K*(b) with wedge angle o for crack length (b — a) = 0.01 m and
0.005 m when ¢ = 0.01 m and 4 = 0.03 m. The wedge angles (defined as o) with equal intensity factors of
crack tips A and B are 0.37% and 0.407 for crack length 0.01 m and 0.005 m, respectively. It is observed that
K*(a) > K*(b) for a > ac and K*(a) reaches its maximum when o = ac. However, when o < o, the
intensity factor K*(b) reaches its maximum and is greater than K*(a).
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Fig. 3. Variation of the intensity factors K*(a) and K*(b) with o at different crack length (b — a) when @ = 0.01 m and 2 = 0.03 m.
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Fig. 4. Variation of the intensity factors K*(a) and K*(b) with « at different wedge angle when b —a = 0.005 m and # = 0.03 m.

4.2. Effects of interface crack location

Consider the case of crack length 0.005 m and 4 = 0.03 m. From the previous section, we know that
oc = 0.407. Fig. 4 shows the variations of K*(a) and K*(b) with distance » = a. Intensity factors K*(a) and
K*(b) decrease for larger distance a when the wedge angle (such as o = n/2, 7) is greater than ac. On the
contrary, the intensity factors increase for larger @ when o < 0. It also can be seen that K*(a) is unbounded
if the crack tip (point A) approaches the wedge apex.
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Fig. 5. Variation of the intensity factors K*(a) and K*(b) with crack length (b — a) at different wedge angle when a = 0.01 m and
h=0.03m.

4.3. Effects of interface crack length

Under the conditions of ¢ = 0.01 m and # = 0.03 m, Fig. 5 plots the distributions of intensity factors
with crack length (b — a) at different wedge angle «. The results show that K*(a) and K*(b) increase for
longer crack length.
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